NIM: Generative Neural Networks
for Simulation Input Modeling

Wang Cen, Emily Herbert, Peter Haas
University of Massachusetts Amherst

Simulation Input Modeling

« Simulations are widely used to improve existing systems, e.g.
* Emergency rooms, call centers, finance, manufacturing, ...

 Input models are fitted to represent input processes to a system
* New samples from the models are drawn to drive simulations
« Probability distributions: exp(), Beta(a, B), etc.
« Stochastic processes: ARMA, NHPP, etc.

Input Modeling is Key to Simulation

 Faithful input models help ensure credible

results
' True Distribution Estimated Estimated
« But hard! Distribution Goodness of Fit
« Distribution-fitting software fits many distribution | i.i.d. beta beta Good
families on historical data and recommends the i.i.d. exp Gamma Good
best one based on GoF metriCS i.i.d. Gaussian mixture | Johnson SU
: . i.i.d. Gamma-Uniform | Joshson SB
« Current software fails for complex i.i.d. - '
Co : : ARMA Johnson SU Good
distributions and stochastic processes
NHPP Pearson Type VI Good
Call center data Pearson Type VI

« Good news: increasingly abundant data
 |oT sensors, logs, annotated machine vision, ...

Results from ExpertFit

NIM: Neural Input Modeling

* NIM is a neural-network-based solution to input modeling
that exploits abundant data
« Automatically fits complex stochastic processes
» Automatically, efficiently generates sample paths
* Avoids overfitting
» Can exploit prior knowledge (bounds, i.i.d. structure, multimodality)

 Novel architecture
 Variational autoencoder
» Long Short-Term Memory network to concisely capture temporal dependencies

z Z o, o

ii, &
X1 i1 01 71 z1,0 i1 01
X2 fi2 02 Z2 Z2, X1 2 02

| — E — T O T B i R e) — D — | .|,] .
Xt ,at Ot Zt Zty Xt—1 l,)ft Ot

X

.

NIM Inspiration

« By inversion method (for continuous RVs):
« If Z~ N(0,1),then X = G(Z) = F~}(®(Z2)) is distributed according to F

* We can extend the idea to a stochastic process X = (Xi,..., X;)
o F(x1,....xt)=F(x1)F(x2 | x1) ... F(x¢ | x1,--.,Xe—1)
e Zi,...,Zs ~ N(0,1) X1 = Gi(Z1), Xo = Go(Zo| X1), ..., Xe = Ge(Ze| X1, Xo, ..., Xe—1)
e Gizilxa, ..., xi—1) = F7H(®(z)|x1, -+ -, Xi-1)

« We have thus specified G to transform £1,. . ., Z: to stochastic process X

* Neural networks can learn complex functions like G from data

Outline

Neural networks & generative neural networks

NIM-VM for i.i.d random variables
 Variational Autoencoder (VAE) + Multilayer Perceptron (MLP)

NIM-VL for stochastic processes
* VAE + Long Short-term Memory Network (LSTM)

Experimental Results
» Accuracy and Performance

Future Work

Neural Nets & Generative Neural Nets

 Neural Network

* A means of doing machine learning, in which a computer learns to some
complex function by analyzing training examples.

» Generative Neural Network (GNN)
» Learns a distribution P(X) and generates novel samples from it

 We use a type of GNN called a Variational Autoencoder (VAE)
« Accomplishes generation tasks via an encoder E and a decoder D
« Use encoder to facilitate training (learns internal representation)
» Use decoder to draw new samples

Synthetic faces

NIM-VM Decoder z— D - (3.8) — x

* Observed (real-valued) datapoint x is assumed to generated as follows:

« Sample a latent variable z from some prior distribution P(z)

Feed z into a function g that outputs a data-generation distribution P(x | z)

X is a sample from the data-generation distribution

For convenience, we take P(z) = N(0,1) and P(x | z) = N({1,5?)

Notice that &t = [i(z),5 = 6(z) so that x = f(z) + 6(2)€ with & ~ N(0,1)

» Use decoder D to learn the complex g function

NIM-VM Encoder

 Encoder E

* Learns the posterior probability P(z | x) of the latent variable that produced x

—»(/175')—>Z—>

« P(z | x) is complex and expensive to compute via Bayes rule

« E approximates it by a simpler distribution Q(z | x) = N(ji, 52)

~

« Notice that i = fi(x),d = &(x)

NIM-VM Neural Architecture

* The encoder and decoder use Multilayer Perceptron (MLP) architecture

Encoder E:

h—= max (0, Wix + 131), [= Woh + by, log5? = Wah+ bs

Decoder D:
}\7: max(Om,W12+131), = Vl\\/zi;—i—Bz, |og62 = W3B—|—B3

W’s are “weights” and b’s are “biases”, collected in 0

0 is learned during training, using data

Input

Layer -

XO0rz

Hidden
Layer h

Output
Layer

logo

Training NIM-VM <

— (fi,6) —2z— D |—(i,5)

* We train NIM-VM by choosing 6 to minimize loss function (via SGD)

1 1 Y
L(x;0) = —§(|0g52—ﬁ2—52+1)+§<Iog2w+log62+(X 62“))

* First term: KL-divergence between Q(z | x) = N(ji,5°) and P(z) = N(0,1)
» z-values produced by the encoder should look like i.i.d. samples from N(O,1)
» Acts as a regularizer, and helps avoid overfitting to data

 Second term: Reconstruction loss E;[—logP(x | z)] where z ~ N([, 62)
* The values we sample from P(x | z) should look like training data

NIM-VM Limitations

NIM-VM works well for i.i.d. random variables (each X is real-valued)
but not well for stochastic processes where X = (X,..., X;)

* The number of neurons (size of §) grows linearly with the length of the
stochastic process

* NIM-VM can only handle a fixed input and output size

 MLPs are not good at capturing long-range dependencies, key to
modeling complex stochastic processes

N I M - V L Parameters

With shifted for
Training data Internal Representation training data Generation
X ﬁ’a& Zz Z ﬁa&
X1] Encoder] [01] (21 - 21,0 Decoder fi] [01]
o X2 fi2 02 22 Z2,X1 fi2 02
Training |\— E +—1 .|/, . |l—|.|—1] . | — D - |,
| Xt I_STM _ﬂt_ _&t_ | Z¢ | | 2ty Xt—1 | I_STM _ﬁt_ _6't_
Concat
Z;
2 — [z,) 0161 Y ==t « LSTM to capture long-range
_______________________________ | dependency
o
Generation 22— % [z, 1] 5 2. 52 Yo - - Concatenation for
seqguential generation
Zt

it ——> [Zt,)/t—l] —> D — [lt, 0t —> Yt - - -»

Long Short-term Memory (LSTM)

« LSTMs are good at modeling time series

» They explicitly model temporal dependency
across the timesteps

« Atatime stepi:
(hi,ci) = fistm(hi—1, ci—1, Xi; OLsTM™)
« h;: hidden state, ¢;: cell state

* They “remember” what happened in the past

O

Task-Specific MLP

(-

hi—_1,ci—1

&

Task-Specific MLP

2O

D

Task-Specific MLP

LSTM Layer

&~

192

LSTM Layer

O

LSTM Layer

&

Training NIM-VL

Parameters
With shifted for
Training data Internal Representation training data Generation
X ijﬂ o Z Z ﬂ) o

1] Encoder fir] [01] (21 [21,0] Decoder fin] [61]

X2 fi2 02 Z2 Z2, X1 fi2 02

— > E —> . ’ . —> . — . — > D > .)
| Xt _ _ﬁt_ _(~7t_ | Zt | |: Lty Xt=1 | _ﬁt_ _6't_
NIM-VM NIM-VL

t

1 1 xd N2 D
_§(|Og5_2_ﬁ2_5_2_|_1) ‘ _EZ(IOgUI_Mi_Ji+1)
Loss function =1

N

1 o (x—f1)? 1 o xi — fii)?
—|—§<Iog27r+|oga —I—T) +§Zl<log27r+log6,2+%)

NIM-VL Generation

X ﬁa& V4 Z ﬂa&
[x1] 1| [61] Bl [21,0] (1] [61]
X2 fi2 op: Z> Z2, X1 fi2 op:
— E — | . . | — D — | .|,
| Xt] _,ELt_ _5t_ | Zt | Zty Xt—1 _,at_ _3t_
Z;
1. Sample z ~ N(0, 1) a = [ae] D}t
2. Compute [i; and &; z __________________
! 2
A AD : -
3. Samp|e Vi~ N(,U,',O'I-) Zz—"»[zg,yl}—> D ———> [, 03 —> Y2 - - -»
4. | < i+ 1 and repeat
Z:

Zt ——> [Zt,_)/t—l} —> D — [, 0t —> Yt - - -»

Exploiting Domain Knowledge*

e |l.i.d. property: Use NIM-VM
« Simpler and faster than NIM-VL
» \Won'’t spuriously estimate (nonexistent) dependencies

 Bounded random variables: Use transformations
« Apply nonlinear transformation to map each training x to real line
* Apply inverse transformation to NIM generated output

« Multimodal distributions: Mixture models
« Replace N(L, 62) in the decoder by a Gaussian mixture model

*See paper for details

Some Experimental Results

« See paper for more experiments and details

Accuracy: |.1.D. Multimodal Distribution

.i.d. Gamma Uniform mixture

« 100,000 training samples 03l 1 Gound Truth
' | 1 NIM
| [1 ExpertFit
« Compare empirical densities ~ £0.2
« Ground truth (exact density) é
* NIM-VL with Gaussian mixture 0.1 -
» ExpertFit
0.0

0 5 10 15 20
Sample Value
0.6 * Gamma(2.875, 0.5) + 0.4 * Uniform(10,20)

Accuracy: Complex Stochastic Process

* Non-homogeneous Poisson Process

 Trained NIM-VL Non-homogenous Poisson Process - Arrival Rate
1,000 sample paths on [0,50] - —
« Used log-transformation since interarrival Grgung Tt
times are positive 2.0 |
@ & ; ' l\ /\ /I
€151 | / \\/ \;,
\ \ |
« Compared empirical arrival rates to o] VO \/ \/ \/ \,
ground truth NIM can extrapolate
> 20 40 60 80 100
Time

A(t) = Lsin(Zt) + 3

Accuracy: Mean Log-Likelihood

« Compute mean log-likelihood
over 1000 sample paths
* From ground truth distributions
» From distributions learned by NIM

» From distributions learned by
ExpertFit

* Log probability of NIM sample
paths and ground-truth sample
paths are close

 Larger values than ExpertFit

1014

—_

o
o
1

Log Probability

-102 7

_103 i

_104 i

N
< o
1

N
Q
1

Sample Path Log Probability

B NIM-VL
@ Ground Truth
BN ExpertFit

ARMA(3, 3)

NHPP l.i.d. Gamma-unif. mix.

Accuracy: Real-World Data

« San Francisco Fire Department call

center: Call interarrival times
Empirical Call-Arrival Rate

— Test
25 1 NIM

* One year of data o \JVVM \A'\W
» 2/3 used for training (243 days) 20 - W \Nw\

« 1/3 used for test (122 days) 2. . M,V VV\V\/\
m 2
10 - LW\ 4/
M\/-‘\l_\/\/
« Compare empirical call-arrival rates 51
O T T T T T
0 5 10 15 20

Time (Hour)

Accuracy: End-to-End Simulation

 Single-server FIFO queue
 Arrival process is NHPP

A(t) = 3sin(§t) + 3 Q-Q Plot: Dist'n of 60t Waiting Time

* Processing times are i.i.d. Gamma(1.2, 0.4) 15.01 o

 Simulate waiting time for 60t job e
: : g , 10.0 1 ®
» Using ground-truth input distributions o

» Using input distributions learned by NIM-VL ; e
(1000 sample paths for training) 5.0 -
2:54
0.0

0 5 10 15
Ground Truth

Performance

* Training times
« On workstation with 2.10 GHz Intel CPU + NVIDIA GPU
 Training times between 10-20 minutes

« Generation times
« On a commodity 2018 MacBook Pro
* 1 million i.i.d. learned exponential random variables in 0.12 seconds
« 1,000 sequences of 1,000 learned NHPP interarrival times in 0.85 seconds
 Basically matrix multiplications: Can be further improved using GPU

* Training-set size
« What is smallest training set size to get results comparable to 1,000 training sample paths?
« ARMA(3,3): 10 NHPP: 250 Gamma-unif mixture: 1,000
* The simpler the distribution, the less training data is needed

Conclusion and Future Work

« Generative NNs are a promising tool for simulation input modeling
in abundant-data scenarios

» Automated
* Minimal assumptions
« Can capture complex statistical structure

* Future work
« Conditional NIM for what-if analysis and transferring models
Nonstationary processes
Discrete random inputs
Marked point processes
Multidimensional processes

Horses with hats

Thanks!

Source code available at: https://github.com/cenwangumass/nim

https://github.com/cenwangumass/nim

