NIM: Generative Neural Networks for Simulation Input Modeling

Wang Cen, Emily Herbert, Peter Haas University of Massachusetts Amherst

Simulation Input Modeling

- Simulations are widely used to improve existing systems, e.g.
 - Emergency rooms, call centers, finance, manufacturing, ...
- Input models are fitted to represent input processes to a system
 - New samples from the models are drawn to drive simulations
 - Probability distributions: $\exp(\lambda)$, $Beta(a, \beta)$, etc.
 - Stochastic processes: ARMA, NHPP, etc.

Input Modeling is Key to Simulation

Faithful input models help ensure credible results

• But hard!

- Distribution-fitting software fits many distribution families on historical data and recommends the best one based on GoF metrics
- Current software fails for complex i.i.d. distributions and stochastic processes
- Good news: increasingly abundant data
 - IoT sensors, logs, annotated machine vision, ...

True Distribution	Estimated Distribution	Estimated Goodness of Fit
i.i.d. beta	beta	Good
i.i.d. exp	Gamma	Good
i.i.d. Gaussian mixture	Johnson SU	Bad
i.i.d. Gamma-Uniform	Joshson SB	Bad
ARMA	Johnson SU	Good
NHPP	Pearson Type VI	Good
Call center data	Pearson Type VI	Bad

Results from ExpertFit

NIM: Neural Input Modeling

- NIM is a neural-network-based solution to input modeling that exploits abundant data
 - Automatically fits complex stochastic processes
 - Automatically, efficiently generates sample paths
 - Avoids overfitting
 - Can exploit prior knowledge (bounds, i.i.d. structure, multimodality)
- Novel architecture
 - Variational autoencoder
 - Long Short-Term Memory network to concisely capture temporal dependencies

NIM Inspiration

- By inversion method (for continuous RVs):
 - If $Z \sim N(0,1)$, then $X = G(Z) = F^{-1}(\Phi(Z))$ is distributed according to F
- We can extend the idea to a stochastic process $X = (X_1, \ldots, X_t)$
 - $F(x_1,...,x_t) = F(x_1)F(x_2 | x_1)...F(x_t | x_1,...,x_{t-1})$
 - $Z_1, \ldots, Z_t \sim N(0, 1)$ $X_1 = G_1(Z_1), X_2 = G_2(Z_2|X_1), \ldots, X_t = G_t(Z_t|X_1, X_2, \ldots, X_{t-1})$
 - $G_i(z_i|x_1,...,x_{i-1}) = F_i^{-1}(\Phi(z_i)|x_1,...,x_{i-1})$
 - We have thus specified G to transform Z_1, \ldots, Z_t to stochastic process X
- Neural networks can learn complex functions like G from data

Outline

- Neural networks & generative neural networks
- NIM-VM for i.i.d random variables
 - Variational Autoencoder (VAE) + Multilayer Perceptron (MLP)
- NIM-VL for stochastic processes
 - VAE + Long Short-term Memory Network (LSTM)
- Experimental Results
 - Accuracy and Performance
- Future Work

Neural Nets & Generative Neural Nets

- Neural Network
 - A means of doing machine learning, in which a computer learns to some complex function by analyzing training examples.
- Generative Neural Network (GNN)
 - Learns a distribution P(X) and generates novel samples from it
- We use a type of GNN called a Variational Autoencoder (VAE)
 - Accomplishes generation tasks via an encoder E and a decoder D
 - Use encoder to facilitate training (learns internal representation)
 - Use decoder to draw new samples

Synthetic faces

NIM-VM Decoder

 $z \longrightarrow D \longrightarrow (\hat{\mu}, \hat{\sigma}) \longrightarrow x$

- Observed (real-valued) datapoint x is assumed to generated as follows:
 - Sample a *latent variable* z from some prior distribution P(z)
 - Feed z into a function g that outputs a data-generation distribution $P(x \mid z)$
 - x is a sample from the data-generation distribution
 - For convenience, we take P(z) = N(0,1) and $P(x \mid z) = N(\hat{\mu}, \hat{\sigma}^2)$
 - Notice that $\hat{\mu} = \hat{\mu}(z), \hat{\sigma} = \hat{\sigma}(z)$ so that $\mathbf{x} = \hat{\mu}(z) + \hat{\sigma}(z)\boldsymbol{\xi}$ with $\boldsymbol{\xi} \sim N(0, 1)$
- Use decoder *D* to learn the complex *g* function

NIM-VM Encoder

$$x \longrightarrow E \longrightarrow (\tilde{\mu}, \tilde{\sigma}) \longrightarrow z \longrightarrow D \longrightarrow (\hat{\mu}, \hat{\sigma})$$

• Encoder E

- Learns the posterior probability $P(z \mid x)$ of the latent variable that produced x
- $P(z \mid x)$ is complex and expensive to compute via Bayes rule
- *E* approximates it by a simpler distribution $Q(z \mid x) = N(\tilde{\mu}, \tilde{\sigma}^2)$
- Notice that $\tilde{\mu} = \tilde{\mu}(x), \tilde{\sigma} = \tilde{\sigma}(x)$

NIM-VM Neural Architecture

- The encoder and decoder use Multilayer Perceptron (MLP) architecture
 - Encoder E:

 $\tilde{h} = \max(0_m, \tilde{W}_1 x + \tilde{b}_1), \quad \tilde{\mu} = \tilde{W}_2 \tilde{h} + \tilde{b}_2, \quad \log \tilde{\sigma}^2 = \tilde{W}_3 \tilde{h} + \tilde{b}_3$

• Decoder D:

 $\hat{h} = \max(0_m, \hat{W}_1 z + \hat{b}_1), \quad \hat{\mu} = \hat{W}_2 \hat{h} + \hat{b}_2, \quad \log \hat{\sigma}^2 = \hat{W}_3 \hat{h} + \hat{b}_3$

- W's are "weights" and b's are "biases", collected in θ
- θ is learned during training, using data

Training NIM-VM

$$x \longrightarrow E \longrightarrow (\tilde{\mu}, \tilde{\sigma}) \longrightarrow z \longrightarrow D \longrightarrow (\hat{\mu}, \hat{\sigma})$$

• We train NIM-VM by choosing θ to minimize loss function (via SGD)

$$L(x;\theta) = -\frac{1}{2} (\log \tilde{\sigma}^2 - \tilde{\mu}^2 - \tilde{\sigma}^2 + 1) + \frac{1}{2} \left(\log 2\pi + \log \hat{\sigma}^2 + \frac{(x-\hat{\mu})^2}{\hat{\sigma}^2}\right)$$

- First term: **KL-divergence** between $Q(z | x) = N(\tilde{\mu}, \tilde{\sigma}^2)$ and P(z) = N(0, 1)
 - z-values produced by the encoder should look like i.i.d. samples from N(0,1)
 - Acts as a regularizer, and helps avoid overfitting to data
- Second term: **Reconstruction loss** $E_z[-\log P(x \mid z)]$ where $z \sim N(\hat{\mu}, \hat{\sigma}^2)$
 - The values we sample from $P(x \mid z)$ should look like training data

NIM-VM Limitations

NIM-VM works well for i.i.d. random variables (each *X* is real-valued) but not well for stochastic processes where $X = (X_1, ..., X_t)$

- The number of neurons (size of θ) grows linearly with the length of the stochastic process
- NIM-VM can only handle a fixed input and output size
- MLPs are not good at capturing long-range dependencies, key to modeling complex stochastic processes

Long Short-term Memory (LSTM)

- LSTMs are good at modeling time series
 - They explicitly model temporal dependency across the timesteps
 - At a time step *i* :

 $(h_i, c_i) = f_{\text{LSTM}}(h_{i-1}, c_{i-1}, x_i; \theta_{\text{LSTM}})$

- h_i : hidden state, c_i : cell state
- They "remember" what happened in the past

Training NIM-VL

NIM-VM

NIM-VL

Loss function

NIM-VL Generation

- 1. Sample $z_i \sim N(0, 1)$
- 2. Compute $\hat{\mu}_i$ and $\hat{\sigma}_i$
- 3. Sample $y_i \sim N(\hat{\mu}_i, \hat{\sigma}_i^2)$
- 4. $i \leftarrow i + 1$ and repeat

Exploiting Domain Knowledge*

• I.i.d. property: Use NIM-VM

- Simpler and faster than NIM-VL
- Won't spuriously estimate (nonexistent) dependencies
- Bounded random variables: Use transformations
 - Apply nonlinear transformation to map each training x to real line
 - Apply inverse transformation to NIM generated output
- Multimodal distributions: Mixture models
 - Replace $N(\hat{\mu}, \hat{\sigma}^2)$ in the decoder by a Gaussian mixture model

*See paper for details

Some Experimental Results

• See paper for more experiments and details

Accuracy: I.I.D. Multimodal Distribution

- 100,000 training samples
- Compare empirical densities
 - Ground truth (exact density)
 - NIM-VL with Gaussian mixture
 - ExpertFit

i.i.d. Gamma Uniform mixture

0.6 * Gamma(2.875, 0.5) + 0.4 * Uniform(10,20)

Accuracy: Complex Stochastic Process

- Non-homogeneous Poisson Process
- Trained NIM-VL
 - 1,000 sample paths on [0,50]
 - Used log-transformation since interarrival times are positive
- Compared empirical arrival rates to ground truth

Non-homogenous Poisson Process - Arrival Rate

Accuracy: Mean Log-Likelihood

- Compute mean log-likelihood over 1000 sample paths
 - From ground truth distributions
 - From distributions learned by NIM
 - From distributions learned by ExpertFit
- Log probability of NIM sample paths and ground-truth sample paths are close
- Larger values than ExpertFit

Accuracy: Real-World Data

- San Francisco Fire Department call center: Call interarrival times
- One year of data
 - 2/3 used for training (243 days)
 - 1/3 used for test (122 days)
- Compare empirical call-arrival rates

Accuracy: End-to-End Simulation

- Single-server FIFO queue
- Arrival process is NHPP

 $\lambda(t) = \frac{1}{2}\sin(\frac{\pi}{8}t) + \frac{3}{2}$

- Processing times are i.i.d. Gamma(1.2, 0.4)
- Simulate waiting time for 60th job
 - Using ground-truth input distributions
 - Using input distributions learned by NIM-VL (1000 sample paths for training)

Q-Q Plot: Dist'n of 60th Waiting Time

Performance

Training times

- On workstation with 2.10 GHz Intel CPU + NVIDIA GPU
- Training times between 10-20 minutes

Generation times

- On a commodity 2018 MacBook Pro
- 1 million i.i.d. learned exponential random variables in 0.12 seconds
- 1,000 sequences of 1,000 learned NHPP interarrival times in 0.85 seconds
- Basically matrix multiplications: Can be further improved using GPU

Training-set size

- What is smallest training set size to get results comparable to 1,000 training sample paths?
- ARMA(3,3): **10** NHPP: **250** Gamma-unif mixture: **1,000**
- The simpler the distribution, the less training data is needed

Conclusion and Future Work

- Generative NNs are a promising tool for simulation input modeling in abundant-data scenarios
 - Automated
 - Minimal assumptions
 - Can capture complex statistical structure

• Future work

- Conditional NIM for what-if analysis and transferring models
- Nonstationary processes
- Discrete random inputs
- Marked point processes
- Multidimensional processes

Horses with hats

Thanks!

Source code available at: https://github.com/cenwangumass/nim

