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Simulation Input Modeling
• Simulations are widely used to improve existing systems, e.g.

• Emergency rooms, call centers, finance, manufacturing, …

• Input models are fitted to represent input processes to a system
• New samples from the models are drawn to drive simulations
• Probability distributions: ,                  , etc.
• Stochastic processes: ARMA, NHPP, etc.



Input Modeling is Key to Simulation
• Faithful input models help ensure credible 

results

• But hard!
• Distribution-fitting software fits many distribution 

families on historical data and recommends the 
best one based on GoF metrics

• Current software fails for complex i.i.d. 
distributions and stochastic processes

• Good news: increasingly abundant data
• IoT sensors, logs, annotated machine vision, …

True Distribution Estimated 
Distribution

Estimated 
Goodness of Fit

i.i.d. beta beta Good
i.i.d. exp Gamma Good
i.i.d. Gaussian mixture Johnson SU Bad
i.i.d. Gamma-Uniform Joshson SB Bad
ARMA Johnson SU Good
NHPP Pearson Type VI Good
Call center data Pearson Type VI Bad

Results from ExpertFit



NIM: Neural Input Modeling
• NIM is a neural-network-based solution to input modeling

that exploits abundant data
• Automatically fits complex stochastic processes
• Automatically, efficiently generates sample paths
• Avoids overfitting
• Can exploit prior knowledge (bounds, i.i.d. structure, multimodality)

• Novel architecture
• Variational autoencoder
• Long Short-Term Memory network to concisely capture temporal dependencies 



NIM Inspiration
• By inversion method (for continuous RVs):

• If                      , then                                           is distributed according to F

• We can extend the idea to a stochastic process
•

• ,

•

• We have thus specified G to transform                 to stochastic process X

• Neural networks can learn complex functions like G from data



Outline

• Neural networks & generative neural networks

• NIM-VM for i.i.d random variables
• Variational Autoencoder (VAE) +  Multilayer Perceptron (MLP)

• NIM-VL for stochastic processes
• VAE + Long Short-term Memory Network (LSTM)

• Experimental Results
• Accuracy and Performance

• Future Work



Neural Nets & Generative Neural Nets
• Neural Network

• A means of doing machine learning, in which a computer learns to some 
complex function by analyzing training examples.

• Generative Neural Network (GNN)
• Learns a distribution P(X) and generates novel samples from it

• We use a type of GNN called a Variational Autoencoder (VAE)
• Accomplishes generation tasks via an encoder E and a decoder D
• Use encoder to facilitate training (learns internal representation)
• Use decoder to draw new samples

Synthetic faces



NIM-VM Decoder
• Observed (real-valued) datapoint x is assumed to generated as follows:

• Sample a latent variable z from some prior distribution

• Feed z into a function g that outputs a data-generation distribution

• x is a sample from the data-generation distribution

• For convenience, we take                           and 

• Notice that                                   so that  

• Use decoder D to learn the complex g function



NIM-VM Encoder
• Encoder E

• Learns the posterior probability               of the latent variable that produced x

• is complex and expensive to compute via Bayes rule

• E approximates it by a simpler distribution 

• Notice that 



NIM-VM Neural Architecture
• The encoder and decoder use Multilayer Perceptron (MLP) architecture

• Encoder E:

• Decoder D:

• W’s are “weights” and b’s are “biases”, collected in 

• is learned during training, using data

Input
Layer

Hidden
Layer h

Output
Layer



Training NIM-VM
• We train NIM-VM by choosing     to minimize loss function (via SGD)

• First term: KL-divergence between                             and
• z-values produced by the encoder should look like i.i.d. samples from N(0,1)
• Acts as a regularizer, and helps avoid overfitting to data

• Second term: Reconstruction loss 
• The values we sample from              should look like training data



NIM-VM Limitations
NIM-VM works well for i.i.d. random variables (each X is real-valued) 
but not well for stochastic processes where

• The number of neurons (size of   ) grows linearly with the length of the 
stochastic process

• NIM-VM can only handle a fixed input and output size

• MLPs are not good at capturing long-range dependencies, key to 
modeling complex stochastic processes



NIM-VL
Training data

Encoder Decoder

Internal Representation
With shifted 
training data

Parameters 
for 
Generation

Training

Generation

LSTM

Concat

LSTM

• LSTM to capture long-range 
dependency

• Concatenation for 
sequential generation



Long Short-term Memory (LSTM)
• LSTMs are good at modeling time series

• They explicitly model temporal dependency 
across the timesteps

• At a time step i :

• : hidden state,     : cell state

• They “remember” what happened in the past



Training NIM-VL
Training data

Encoder Decoder

Internal Representation
With shifted 
training data

Parameters 
for 
Generation

Loss function

NIM-VM NIM-VL



NIM-VL Generation



Exploiting Domain Knowledge*
• I.i.d. property: Use NIM-VM

• Simpler and faster than NIM-VL
• Won’t spuriously estimate (nonexistent) dependencies

• Bounded random variables: Use transformations
• Apply nonlinear transformation to map each training x to real line
• Apply inverse transformation to NIM generated output

• Multimodal distributions: Mixture models
• Replace                in the decoder by a Gaussian mixture model

*See paper for details



Some Experimental Results
• See paper for more experiments and details



Accuracy: I.I.D. Multimodal Distribution
i.i.d. Gamma Uniform mixture

0.6 * Gamma(2.875, 0.5) + 0.4 * Uniform(10,20)

• 100,000 training samples 

• Compare empirical densities
• Ground truth (exact density)
• NIM-VL with Gaussian mixture
• ExpertFit



Accuracy: Complex Stochastic Process
• Non-homogeneous Poisson Process

• Trained NIM-VL 
• 1,000 sample paths on [0,50]
• Used log-transformation since interarrival 

times are positive

• Compared empirical arrival rates to 
ground truth

Non-homogenous Poisson Process - Arrival Rate

NIM can extrapolate



Accuracy: Mean Log-Likelihood
• Compute mean log-likelihood 

over 1000 sample paths
• From ground truth distributions
• From distributions learned by NIM
• From distributions learned by 

ExpertFit

• Log probability of NIM sample 
paths and ground-truth sample 
paths are close
• Larger values than ExpertFit



Accuracy: Real-World Data
• San Francisco Fire Department call 

center: Call interarrival times

• One year of data
• 2/3 used for training (243 days)
• 1/3 used for test (122 days)

• Compare empirical call-arrival rates

Empirical Call-Arrival Rate



Accuracy: End-to-End Simulation
• Single-server FIFO queue
• Arrival process is NHPP

• Processing times are i.i.d. Gamma(1.2, 0.4)
• Simulate waiting time for 60th job

• Using ground-truth input distributions
• Using input distributions learned by NIM-VL

(1000 sample paths for training)

Q-Q Plot: Dist’n of 60th Waiting Time



Performance
• Training times

• On workstation with 2.10 GHz Intel CPU + NVIDIA GPU
• Training times between 10-20 minutes

• Generation times
• On a commodity 2018 MacBook Pro
• 1 million i.i.d. learned exponential random variables in 0.12 seconds
• 1,000 sequences of 1,000 learned NHPP interarrival times in 0.85 seconds
• Basically matrix multiplications: Can be further improved using GPU

• Training-set size
• What is smallest training set size to get results comparable to 1,000 training sample paths?
• ARMA(3,3): 10     NHPP: 250     Gamma-unif mixture: 1,000
• The simpler the distribution, the less training data is needed



Conclusion and Future Work
• Generative NNs are a promising tool for simulation input modeling

in abundant-data scenarios
• Automated
• Minimal assumptions
• Can capture complex statistical structure

• Future work
• Conditional NIM for what-if analysis and transferring models
• Nonstationary processes
• Discrete random inputs
• Marked point processes
• Multidimensional processes

Horses with hats



Thanks!
Source code available at: https://github.com/cenwangumass/nim

https://github.com/cenwangumass/nim

